STEPPING STONES SHORT STAY SCHOOL MATHEMATICS POLICY

<u>APPENDIX 1</u>

Learning across the curriculum

At Stepping Stones school we plan creative learning opportunities for mathematics across other subjects.

We ensure that Mathematics contributes to learning across the curriculum in the following areas: key skills, spiritual, moral, social and cultural, thinking skills, financial capability, enterprise and work-related learning. We do this by ensuring that these areas are addressed in our planning and teaching in a variety of ways. Mathematics contributes in a major way to the key skills of communication, application of number, ICT, working with others, improving own learning and performance and problem solving.

English

Mathematics contributes significantly to the teaching of English in our school by actively promoting the skills of reading, writing, speaking and listening.

Computing/ICT

The effective use of ICT can enhance the teaching and learning of mathematics when used appropriately. When considering its use, we take into account the following points:

- ICT should enhance good mathematics teaching. It should be used in lessons only if it supports good practice in teaching mathematics;
- Any decision about using ICT in a particular lesson or sequence of lessons must be directly related to the teaching and learning objectives for those lessons;
- ICT should be used if the teacher and/or the children can achieve something more effectively with it than without it;

Science

Almost every scientific investigation or experiment is likely to require one or more of the mathematical skills of classifying, counting, measuring, calculating, estimating and recording in tables and graphs. In science pupils will for example order numbers, including decimals, calculate simple means and percentages, use negative numbers when taking temperatures, decide whether it is more appropriate to use a line graph or bar chart, and plot, interpret and predict from graphs.

Art, Design and Technology

Measurements are often needed in art and design and technology. Many patterns and constructions are based on spatial ideas and properties of shapes, including symmetry. Designs may need enlarging or reducing, introducing ideas of multiplication and ratio. When food is prepared a great deal of measurement occurs, including working out times and calculating cost; this may not be straightforward if only part of a packet of ingredients has been used.

History, Geography and Religious Education

In history and geography children will collect data by counting and measuring and make use of measurements of many kinds. The study of maps includes the use of co-ordinates and ideas of angle, direction, position, scale and ratio. The pattern of the days of the week, the calendar and recurring annual festivals all have a mathematical basis. For older children historical ideas require understanding of the passage of time, which can be illustrated on a time line, similar to the number line that they already know.

Physical Education and Music

Athletic activities require measurement of height, distance and time, while ideas of counting, time, symmetry, movement, position and direction are used extensively in music, dance, gymnastics and ball games.

Personal, Social and Health Education (PSHE) and Citizenship

Mathematics contributes to the teaching of personal, social and health education, and citizenship. The work that children do outside their normal lessons encourages independent study and helps them to become increasingly responsible for their own learning. The planned activities that children do within the classroom encourage them to work together and respect each other's views.